Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rafael A. Adrian, ${ }^{\text {a }}$ Ronald E. Benson, ${ }^{\text {b }}$ Lee M. Daniels, ${ }^{\text {b }}$ Edward R. T. Tiekink ${ }^{\text {a* }}$ and Judith A. Walmsley ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, Texas 78249-0698, USA, and ${ }^{\mathbf{b}}$ Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 77381, USA

Correspondence e-mail: edward.tiekink@utsa.edu, judith.walmsley@utsa.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.027$
$w R$ factor $=0.057$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Di- μ-hydroxo-bis[(2,2'-bipyridine)palladium(II)] trifluoromethanesulfonate

The cation in the title complex, $\left[\mathrm{Pd}_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$ $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$, is essentially planar and features square-planar Pd centers that are linked via a pair of symmetric hydroxo bridges. In the crystal structure, extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and $\pi-\pi$ interactions lead to the formation of cationic columns.

Comment

Dimeric complexes of the general formula $\left[M(L)\left(\mu_{2}-\right.\right.$ $\left.\mathrm{OH})_{2} M(L)\right]^{2+}$ have been proposed for $M=\mathrm{Pd}$ and Pt for $L=$ 2,2'-bipyridine and 1,10-phenanthroline (Wimmer et al., 1988, 1989). While this has been confirmed by X-ray crystallography for the $M=$ Pt complexes (Koz'min et al., 1997; Fekl \& van Eldik, 1998), the analogous structures for $M=\mathrm{Pd}$ are not yet known. The structure of $\left[\operatorname{Pd}(L)\left(\mu_{2}-\mathrm{OH}\right)_{2} \operatorname{Pd}(L)\right]^{2+}$, where $L=$ $2,2^{\prime}$-bipyridine, is reported here as its trifluoromethanesulfonate salt, (I).

(I)

The molecular structure of the cation in (I) is shown in Fig. 1. The Pd atoms are bridged by two $\mu_{2}-\mathrm{OH}$ groups, forming essentially equivalent $\mathrm{Pd}-\mathrm{O}$ bonds (Table 1). The square-planar coordination geometry about each Pd center is completed by a chelating $2,2^{\prime}$-bipyridine ligand. The intramolecular $\mathrm{Pd} 1 \cdots \mathrm{Pd} 2$ separation is 3.0834 (3) \AA. The dihedral angle between the two $\mathrm{PdN}_{2} \mathrm{O}_{2}$ least-squares planes is 3.42 (9) ${ }^{\circ}$. Indeed, the entire cation is essentially planar, as indicated by the r.m.s. deviation for all non-H atoms of $0.056 \AA$.

There are several other structures in the literature containing an $\mathrm{N}_{2} \mathrm{Pd}(\mathrm{OH})_{2} \mathrm{PdN}_{2}$ core. The cations in each of $\left[\left(\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right) \mathrm{Pd}(\mathrm{OH})\right]_{2}\left[\mathrm{ClO}_{4}\right]_{2}$ (Shen et al., 2005) and $[(\text { bipyrazine }) \mathrm{Pd}(\mathrm{OH})]_{2}\left[\mathrm{NO}_{3}\right]_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Schnebeck et al., 2000) are disposed about a center of inversion, indicating that the central core is strictly planar. By contrast, a butterfly conformation is observed in the cation in [(4-MeO$\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{C}(\mathrm{Me})-\mathrm{C}(\mathrm{Me})=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right) \mathrm{Pd}(\mathrm{OH})\right]_{2}\left[\mathrm{BF}_{4}\right]_{2} \cdot-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{THF}$ (Kannan et al., 2000). In the two centrosymmetric structures, the hydroxyl H atoms lie above and below the central core, and in the butterfly structure, the hydroxyl H

Received 15 February 2006
Accepted 16 February 2006

Figure 1
The cation in (I), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

Figure 2
Hydrogen bonding (dashed lines) between centrosymmetric pairs in (I) (Crystal Impact, 2002). Colour code: Pd (orange), F (cyan), O (red), N (blue), C (gray) and H (green).
atoms project laterally from the molecule. A different situation pertains in the structure of (I) in that the hydroxyl H atoms lie to the same side of the molecule, i.e. are syn. This arrangement allows for hydrogen bonding, as shown in Fig. 2 and detailed in Table 2. Here, centrosymmetrically related molecules are connected via hydrogen bonds to O3 belonging to one of the trifluoromethanesulfonate anions (symmetry code $1-x, 1-y, 1-z$). While this has the effect of bringing the aromatic rings in close proximity, the closest distance between ring centroids within this dimeric unit is 3.5775 (15) \AA and occurs between the $\mathrm{PdN}_{2} \mathrm{C}_{2}$ chelate rings. Additional interactions occur between centrosymmetrically related dimers with the result that the shortest distance between two dimers is shorter than the shortest distance within an individual dimeric unit. Thus, the distance between the centroid of the $\mathrm{Pd} 1 \mathrm{~N}_{2} \mathrm{C}_{2}$ chelate ring and the $\mathrm{Pd}(\mathrm{OH})_{2} \mathrm{Pd}$ core is $3.2405(14) \AA$ for symmetry code $(-x, 1-y, 1-z)$. These associations lead to the formation of columns parallel to the a axis, as shown in Fig. 3. As indicated in Table 2, there are many other hydrogen-bond interactions in the structure, primarily of the type $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$. The trifluoromethanesulfonate O atoms of one anion, viz. O3, O4 and O5, all form $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions to provide additional stabilization of

Figure 3
The crystal packing in (I), viewed approximately down the a axis. Colour codes as for Fig. 2.
the dimer shown in Fig. 2. Links between dimers are afforded by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions involving atom O 7 belonging to the second trifluoromethanesulfonate anion. This atom also forms an interaction to the $\operatorname{Pd} 2 \mathrm{~N}_{2} \mathrm{C}_{2}$ chelate ring so that the O7 \cdots ring centroid distance is 3.068 (3) \AA and the angle at O7 is $152.64(14)^{\circ}$. Links between columns are provided by $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ contacts involving the remaining trifluoromethane-sulfonate-bound O atoms, i.e. O 6 and O 8 . The most prominent contact involving an F atom also provides a link between columns (Table 2).

Experimental

The complex was prepared by adding $\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)(0.462 \mathrm{~g}$, $1.80 \mathrm{mmol})$ to an aqueous suspension $(100 \mathrm{ml})$ of $\mathrm{Pd}\left(2,2^{\prime}\right.$-bipyridine $) \mathrm{Cl}_{2}(0.300 \mathrm{mg}, 0.900 \mathrm{mmol}) ; \mathrm{pH}=4.23$. The mixture was heated at 333 K for 16 h and then filtered to remove AgCl at which stage the pH was 2.64 . The solution was concentrated to approximately 5 ml by slow evaporation at 323 K . As the solution cooled, X-ray diffraction quality crystals formed; pH 1.91 . Melting occurred in two stages so that the crystals turned black between 528 and 543 K and melted in the range $554-556 \mathrm{~K}$.

Crystal data

$\left[\mathrm{Pd}_{2}(\mathrm{OH})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{2}$
$M_{r}=857.32$
Triclinic, $P \overline{1}$
$a=7.6162$ (1) Å
$b=12.7248$ (2) \AA
$c=14.6448$ (2) \AA
$\alpha=86.626$ (1) ${ }^{\circ}$
$\beta=84.153(1)^{\circ}$
$\gamma=75.610(1)^{\circ}$
$V=1366.79(3) \AA^{3}$

Data collection

Rigaku R-AXIS SPIDER diffractometer
ω scans
Absorption correction: numerical (Katayama, 1986; Paturle \& Coppens, 1988)
$T_{\text {min }}=0.754, T_{\text {max }}=0.918$
42226 measured reflections

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.083 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24414 \\
& \quad \text { reflections } \\
& \theta=2.1-25.6^{\circ} \\
& \mu=1.57 \mathrm{~mm}^{-1} \\
& T=153(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.30 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 5114 \text { independent reflections } \\
& 4826 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.040 \\
& \theta_{\max }=25.6^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-15 \rightarrow 15 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0188 P)^{2} \\
&+2.6048 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}
\end{aligned}
$$

H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: TwinSolve (Rigaku, 2002); data reduction: TwinSolve; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

RAA and JAW thank the National Institutes of Health (NIGMS/SCORE, grant No. SO6-08194) for research support.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Crystal Impact (2002). DIAMOND. Version 2.1e. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.
Fekl, U. \& van Eldik, R. (1998). Eur. J. Inorg. Chem. 3, 389-396.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kannan, S., James, A. J. \& Sharp, P. R. (2000). Polyhedron, 19, 155-163.
Katayama, C. (1986). Acta Cryst. A42, 19-23.
Koz'min, P. A., Fedotova, T. N., Kuztnezova, G. N., Surazhskaya, M. D. \& Baranovskii, I. B. (1997). Zh. Neorg. Khim. 42, 1834-1838. (In Russian.)
Paturle, A. \& Coppens, P. (1988). Acta Cryst. A44, 6-7.
Rigaku (2002). TwinSolve. Rigaku/MSC Inc. and Prekat AB, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Schnebeck, R.-D., Freisinger, E. \& Lippert, B. (2000). Eur. J. Inorg. Chem. pp. 1193-1200.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shen, W.-Z., Gupta, D. \& Lippert, B. (2005). Inorg. Chem. 44, 8249-8258.
Wimmer, S., Castan, P., Wimmer, F. L. \& Johnson, N. P. (1988). Inorg. Chim. Acta, 142, 13-15.
Wimmer, S., Castan, P., Wimmer, F. L. \& Johnson, N. P. (1989). J. Chem. Soc. Dalton Trans. pp. 403-412.

[^0]: © 2006 International Union of Crystallography All rights reserved

